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Abstract

Results are presented for Part 2 (density) and Part 3 (viscosity) of the First Industrial

Fluid Properties Simulation Challenge. In both cases, the physical properties were calcu-

lated using existing published force fields not specifically tuned to the problem at hand.

No assessment of the accuracy of our predictions was made until the experimental values

for each problem set were announced at the end of the competition.

Liquid densities were computed for the Part 2 problem set using the Towhee Monte

Carlo molecular simulation program and the Amber96, Charmm22, Compass, and OPLS-

aa force fields. No single force field was able to provide parameters for all the molecules

in the problem set, but the Amber96 force field had the best results of the four tested and

a reasonable coverage of the problem set.

Viscosities were computed for the Part 3 problem set using the LAMMPS molecular

dynamics code. The Towhee program was used to generate equilibrium starting configura-

tions. Only one force field, OPLS-aa, was used. The predicted viscosities showed average

deviation of about 35% from the experimental values. In cases where the experimental

density is known, substantially better accuracy can be expected.
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Introduction

We were motivated to enter the First Industrial Fluid Properties Simulation Challenge

(FIFPSC) for two reasons. First, we wanted to provide a baseline comparison of the results

an industrial scientist could expect when using existing force fields not tuned specifically

to the problem at hand. Second, we wanted to demonstrate the power and utility of

the Towhee and LAMMPS codes which we provide to the public here at Sandia National

Laboratories.

We initially planned on entering all three of the Challenge categories, but attempts to

compute the phase envelope for Part 1 were hindered by extremely low acceptance rates

for molecule transfer moves for nitroethane and propylene glycol monomethyl ether at the

required temperatures.

Liquid Density Prediction

The liquid densities for Part 2 of the FIFPSC were computed using the MCCCS

Towhee simulation package. [1] All simulations were performed in the isobaric-isothermal

ensemble with the temperature and pressures specified in the contest information. Sim-

ulations were equilibrated for at least 20,000 Monte Carlo cycles (one cycle is N moves

where N is the number of molecules in the system), and results are reported for simulations

of 10,000 cycles. Standard deviations were computed by breaking the simulations into 5

blocks.

The Monte Carlo moves consisted of volume changes, coupled-decoupled configura-

tional bias regrowths, translation of the center-of-mass, and rotation about the center-

of-mass. In addition, single atom translation moves were performed for cyclohexane and

pyridine as the configurational bias acceptance rate was low for cyclic molecules.

The coupled-decoupled configurational-bias algorithm used here is based on previous
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work [2] with a few modifications. Flexible bond lengths were introduced as an additional

decoupled selection (with 1000 trial choices for bond length selection) where the biasing

energy was the sum of the vibration terms plus any bond-bond cross terms. Improper

torsions and angle-angle terms were added into the energies computed in the bond angle

selection. An additional biasing function was used during regrowths of cyclohexane in

order to encourage the growth to form the ring.

The Amber96 [3], Charmm22 [4], Compass [5], and OPLS-aa [6] force fields were

utilized in this study. These force fields are among the most commonly used in the simula-

tion community and exist in a state of ongoing competition with each other. Amber96 and

Charmm22 were parameterized for biomolecular simulations and therefore have particular

emphasis on the amino acids. The biological origin of hydrocarbon feed-stocks means that

a good number of industrially relevant functional groups are covered by these force fields.

OPLS-aa also has a biological emphasis, but is more broadly focused on a variety of or-

ganic compounds, and therefore has a more complete coverage of the FIFPSC test suite.

The final force field studied was the Compass force field which was designed for broad use

in the chemical industry. Unfortunately, not all of the parameters for this force field are

publicly available, as it is sold as a portion of the proprietary codes of Accelrys.

A 10 Å cutoff with analytical tail corrections was used for all four force fields, and

coulombic interactions were computed using the Ewald sum method. Charge assignments

were either made based upon the formal rules of the force field (Compass), or inferred from

comparison to similar molecules that have been published in the literature (Amber96,

Charmm22, OPLS-aa). A complete list of the charge assignments and atom types is

provided in the supplementary information.

The computed liquid densities are shown in Table 1. In general there is good agreement

between the various force fields for those molecules where comparison is possible. The
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experimental values were presented in the introduction to this issue.

Using this data we can assess how well each force field performed according to a number

of criteria. First, we consider the generality of the force fields based upon the number

of molecules for which parameters were available. No single force field has published

parameters suitable for all nine of the molecules in the FIFPSC data set. Ordering the force

fields by coverage yields OPLS-aa (8), Amber96 (7), Charmm22 (4), and then Compass

(3).

We also consider the accuracy of the different force fields by computing the root

mean square (RMS) deviation between predicted and experimental densities as shown in

Table 2. Looking at the overall RMS deviation for each force field shows that Amber96 and

Charmm22 are better than Compass and OPLS-aa. However, this is not a fair comparison

as the different force fields did not all have an answer for each of the entries. To eliminate

the possibility that some of the entries were more difficult than others we also look only at

the simulations where all of the force fields had parameters (cyclohexane and isopropanol).

Here we can see that Amber96 is better than the other three (which all do about equally

well).

The results for water deserve special mention. The newest, and most expensive, water

model tested (OPLS-aa TIP5P) [7] does not give improved agreement with experiment

compared to its own predecessors (Amber96 and Charmm22 use variants of the TIP3P

model). Also surprising are the differences seen between the Amber96 and Charmm22

versions of the TIP3P model. The Amber96 version is true to the original TIP3P in that

there are no Lennard-Jones terms on the hydrogens, while Charmm22 does have some

Lennard-Jones terms on the hydrogens. The added terms make the Charmm22 water

model more attractive, and therefore result in higher densities.

Viscosity Prediction
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The liquid viscosities were obtained from molecular dynamics simulations run using

the LAMMPS classical molecular dynamics code. [8,9,10] There exist a variety of methods

for calculating the shear viscosity of liquids from molecular dynamics simulation. In the

limit of infinite computer resources, all of these methods are formally equivalent. In com-

parative studies, some of the more popular methods have been shown to yield statistically

equivalent estimates of viscosities for specific systems. [11,12] The methods can be divided

into two main classes: equilibrium (EMD) and non-equilibrium (NEMD). Equilibrium

methods sample the time-dependence of thermal fluctuations in the stress or momentum

flux tensors, which can be related to the viscosity using linear response theory. [13] Non-

equilibrium methods sample the response of the system to an applied external field (shear

rate or shear stress). Both classes have their strengths and weaknesses. EMD methods

are easier to implement in a general-purpose MD code. A single EMD simulation can be

used to measure other properties besides the viscosity. In EMD methods, there are no

adjustable parameters controlling the accuracy or precision of the viscosity measurement.

NEMD methods require substantial code modification and can not be used to simultane-

ously measure other properties. Usually, several runs must be made in order to identify the

best choice of external field strength. Once the optimal choice of field strength is known,

NEMD methods tend to outperform EMD methods in terms of the CPU time required to

achieve a specified level of precision in the viscosity. However, it is important to note that

the single biggest influence on the CPU requirement is the viscosity of fluid itself. This is

because viscosity is controlled by the longest relaxation time in the fluid, which is usually

associated with molecular rotations. In the case of EMD, in order to obtain good statisti-

cal precision, the simulation must be long enough to sample many such rotations. In the

case of NEMD, in order to avoid systematic deviations from the zero-frequency viscosity,

the shear rate must be much less than the rotational rate constant. In both cases, larger

viscosities require longer simulations.
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After weighing all of these factors, we selected an EMD method based on fluctuations

in the stress tensor. [12,13] This has been found to work well for fairly large polyatomic

molecules such as n-hexadecane [14] and HMX. [15] The EMD simulations were performed

in the NV T ensemble using the LAMMPS molecular dynamics code. [8,9,10] Equilibrium

starting configurations were obtained by using the Towhee code to perform an isobaric-

isothermal Monte Carlo simulation. As well as providing the starting configuration, Towhee

also automatically generated all of the force field data required by LAMMPS. This elim-

inated the time-consuming and error prone task of constructing force field data by hand.

Because of the long runs required to obtain an accurate estimate of viscosity from the MD

simulations, we decided to test just one force field, and we chose OPLS-aa.

Each of the four mixtures was represented by roughly 1000 atoms. The cubic box

dimensions were approximately 22 Å. The actual densities used for each system are given

in Table 3. We have included errors calculated by comparison with the experimental

densities announced at the end of the competition. The simulation densities were slightly

too high for n-nonane, isopropanol and the 25%/75% mixture. In contrast, the density used

for the 50%/50% mixture was lower than experiment. These deviations are comparable to

the OPLS-aa RMS errors for density prediction observed in the previous section.

Having obtained a starting configuration, NVT EMD simulations were carried out

for each system using four nodes (Dec alpha 500 MHz) of the CPlant high performance

computing platform at Sandia National Laboratories. A multiple-timestep velocity-Verlet

integration scheme was used with 1 fs timestep for bonded interactions and 2 fs timestep

for non-bonded and long-range Coulombic interactions. Coulombic interactions were cal-

culated using particle-mesh Ewald summation on an 8x8x8 grid with a 10 Å cut-off for the

real-space contribution. The decay constant for the Gaussian charges was set to 0.237 Å−1.

The simulation throughput was about 40 fs/second.
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Each run was equilibrated for 2 ps and followed by a production run of at least 20

ns. To obtain the macroscopic viscosity, we calculated the components of the symmetric

traceless stress tensor at each timestep following Mondello and Grest [14] and Daivis and

Evans [12]. The time-integral of each shear stress component (Lxx, Lyy, Lzz, Lxy, Lxz,

Lyz) was written to disk every 200 fs. Each of these quantities is one component of a six-

dimensional random walk. For each component we calculated the average mean-square-

displacement < Lαβ(∆t) > for a series of successively larger time displacements ∆ti. The

values of ∆ti used were powers of two multiples of 200 fs. For each ∆ti, the average

was taken over all consecutive non-overlapping time intervals. For each component, the

time-dependent shear viscosity ηαβ(∆t) was then expressed as a numerical derivative of

< Lαβ(∆t) >.

ηαβ(1/2(∆ti + ∆ti+1)) =
V

2kT
qαβ

< Lαβ(∆ti+1) > − < Lαβ(∆ti) >

∆ti+1 −∆ti
[1]

where V is the simulation box volume, T is the temperature, k is Boltzmann’s constant.

qαβ = 1 for α 6= β and qαβ = 3/4 for α = β. All six ηαβ(∆t) are equivalent and in the limit

of large ∆t, they should approach a constant value, the zero frequency shear viscosity.

Figure 1 shows the time-dependent shear viscosity averaged over all six components

equally. Error bars were obtained by dividing each simulation into ten blocks and cal-

culating the variance over blocks and components, 60 data points in total. Subsequent

analysis (not shown) indicated that the variance of the viscosity obtained from Lxx, Lyy

and Lzz was one half greater than the variance of the viscosity obtained from Lxy, Lxz and

Lyz. This is to be expected, as the former three quantities are not independent, due to

the constraint that they sum to zero. Defining the overall average viscosity as an inverse

variance-weighted average over the viscosity for each component yields the formula origi-

nally proposed without justification by Daivis and Evans [12]. Using their formula instead

of a simple average over components did not change the results significantly.
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In order to compute the macroscopic (zero frequency) shear viscosity, we needed to

estimate the long-time limit of the time-dependent shear viscosity. This was done by

first using the graphs in Fig. 1 to identify ∆tlower, such that for all points for which

∆t > ∆tlower, the shear viscosity did not deviate significantly from the apparent long-time

value. The identification of ∆tlower was unambiguous, except in the case of isopropanol,

which had the highest viscosity and the longest relaxation time. The values of ∆tlower

used are given in Table 3. All ∆t points greater than ∆tlower were then used in the long

time average. Since the statistical uncertainty of the points increases with ∆t, we used a

reciprocal variance weighted average over the long-time region. This heavily weighted the

shorter time points, so that the decision to include or exclude the longest time points had

a negligible effect on the averages.

The final viscosity predictions are shown in Table 4. The standard error estimate

included with each value indicates the expected standard deviation of the the underlying

distribution. Isopropanol had the largest standard error, both in absolute and relative

terms. We expect that in all four cases, systematic errors due to the simulation method

and data analysis method is less than the statistical uncertainty.

Relative errors were calculated by comparison with the experimental viscosities an-

nounced at the end of the competition. At first glance, the errors in the predicted viscosities

appeared to be large and also highly variable. However, further analysis revealed a more

consistent picture. We see that in the three cases where the density was overpredicted, the

viscosity was also overpredicted, by an average of about 35%. In the one case where the

density was underpredicted, the viscosity came out very close to the experimental value.

Hence we expect that if the experimental densities had been available, all of the viscosities

would have been overpredicted by roughly similar amounts, and the average relative error

would be considerably improved.
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Conclusions

We attempted to mimic the approach of an industrial scientist when confronted with

the problems for this contest. We utilized publicly available software and force fields

to make our predictions and found reasonable agreement with the experimental data.

An industrial scientist following our approach could expect an error of around 0.04 g/ml

when predicting liquid densities. In the case of viscosity prediction, the observed average

error was 35%. However, if accurate experimental densities are available, the error in the

viscosity predictions could be substantially reduced.
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Figure 1 Plot of time-dependent shear viscosity for pure n-nonane, pure isopropanol, and
the 50/50 and 25/75 mixtures. The error bars for each shear viscosity value indicate the
expected standard deviation of the underlying distribution.
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Table 1 Liquid Densities computed using the Towhee Monte Carlo simulation code. Sub-
scripts show the standard deviation of the last digits. Experimental data was provided by
the contest organizers.

Molecule Temp. Pressure Amber Charmm Compass OPLS-aa Average Expt.

[K] [MPa] [g/ml] [g/ml] [g/ml] [g/ml] [g/ml] [g/ml]
(a) water 293 0.1 0.9967 1.0519 N/A 0.9878 1.011 0.9982

423 2 0.85711 0.9174 N/A 0.8209 0.865 0.9180

(b) cyclohexane 300 0.1 0.7644 0.7458 0.7517 0.7623 0.756 0.7721

400 20 0.6935 0.6737 0.67313 0.6698 0.677 0.7029

(c) isopropanol 298.15 0.1 0.7734 0.7614 0.7714 0.7725 0.770 0.7819

400 5 0.65511 0.61914 0.63310 0.6394 0.637 0.6804

(d) diethanol amine 330 0.1 1.0523 N/A N/A 1.0093 1.03 1.0727

400 5 1.0224 N/A N/A 0.9864 1.004 1.0252

(e) 1,2,3-trichloropropane 290 0.1 N/A N/A N/A 1.38511 1.385 1.3933

400 1.5 N/A N/A N/A 1.21513 1.215 1.2459

(f) triethylene glycol 280 2 1.0773 N/A 1.0481 1.0224 1.049 1.1350

310 0.1 1.0882 N/A 1.0293 0.9912 1.036 1.1107

(g) pyridine 298 0.1 N/A N/A N/A 0.9415 0.941 0.9782

375 10 N/A N/A N/A 0.8584 0.858 0.9090

(h) water and 298 0.1 1.0404 N/A N/A N/A 1.040 1.0205

choline chloride 305 1 1.0125 N/A N/A N/A 1.012 1.0068

(i) water and methanol 325 0.1 0.8666 0.8824 N/A 0.8663 0.871 0.8977

400 10 0.7806 0.8084 N/A 0.7616 0.783 0.8288

Table 2 Root mean square errors in density for all systems studied, and for the subset of
cyclohexane (b) and isopropanol (c). The subscripts show the average standard deviation
in the last digit of the data points used to compute the RMS.

Force Field Total RMS (b) and (c) RMS

[g/ml] [g/ml]
Amber96 0.0305 0.0156
Charmm22 0.0347 0.0388
Compass 0.0556 0.0309
OPLS-aa 0.0596 0.0285
Average 0.040 0.027
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Table 3 Mass densities used in the NV T molecular dynamics simulations of the n-
nonane/isopropanol mixtures. The errors were calculated by comparison with the ex-
perimental values.

System Density Error

[g/ml] [g/ml]
(a) n-nonane 0.718 0.005
(b) isopropanol 0.806 0.027
(c) 50/50 0.707 -0.022
(d) 25/75 0.762 0.016

Table 4 Viscosities for the OPLS-aa force field. Subscripts show the standard error in
the last digits. The relative errors were calculated by comparison with the experimental
values.

System ∆tlower Viscosity Rel. Error

[ns] [mPa s] [ % ]
(a) n-nonane 0.1 0.915 40
(b) isopropanol 0.1 3.03 51
(c) 50/50 0.1 0.786 3
(d) 25/75 0.05 1.325 27
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Supplementary Table 1 Atom types and charge assignments

Atom Amber-96 Charmm-22 Compass OPLS-aa

Type Charge Type Charge Type Charge Type Charge
water
O OW -0.82 OT -0.834 - - OWt5p 0.0
H HW 0.41 HT 0.417 - - HW 0.241
lone pair - - - - - - L5p -0.241
cyclohexane
C CT -0.2 CT -0.18 c4 -0.106 CT -0.12
H HC 0.1 HC 0.09 h1 0.053 HC 1 0.06
isopropanol
C1 CT -0.2438 CT3 -0.27 c4 -0.159 CT -0.18
C2 CT 0.364 CT1 0.14 c4o 0.107 CT 0.205
C3 CT -0.2438 CT3 -0.27 c4 -0.159 CT -0.18
O (C2) OH -0.6761 OH1 -0.66 o2h -0.58 OHm -0.683
H (O) HO 0.4102 H 0.43 h1o 0.42 HO 0.418
H (C1) HC 0.0642 HA 0.09 h1 0.053 HC 1 0.06
H (C2) H1 0.0043 HA 0.09 h1 0.053 HC 1 0.06
H (C3) HC 0.0642 HA 0.09 h1 0.053 HC 1 0.06
diethanol amine
H (O) HO 0.4275 - - - - HO 0.418
O OH -0.6546 - - - - OHm -0.683
C1 (O) CT 0.2117 - - - - CT 0.145
C2 (C,N) CT -0.0249 - - - - CT 0.12
N N -0.4157 - - - - NT 2 -0.78
H (C1) H1 0.0352 - - - - HC 1 0.06
H (C2) H1 0.0209 - - - - HC 1 0.06
H (N) H 0.2719 - - - - H 0.30
1,2,3-trichloropropane
C1 - - - - - - CT 0.0
C2 - - - - - - CT 0.06
C3 - - - - - - CT 0.0
Cl - - - - - - Cl -0.12
H - - - - - - HC 1 0.06
triethylene glycol
H (O) HO 0.40 - - h1o 0.42 HO 0.44
O (H,C) OH -0.65 - - o2h -0.58 OHp -0.7
C1,6 CT 0.18 - - c4o 0.054 CT 0.14
C2,5 CT 0.18 - - c4o 0.054 CT 0.14
O (C,C) OS -0.35 - - o2e -0.32 OS -0.4
C3,4 CT 0.18 - - c4o 0.054 CT 0.14
H (C1,6) H1 0.01 - - h1 0.053 HC 1 0.06
H (C2,5) H1 0.01 - - h1 0.053 HC 1 0.03
H (C3,4) H1 0.01 - - h1 0.053 HC 1 0.06
pyridine
N1 - - - - - - NC -0.678
C2,6 - - - - - - CA 0.473
C3,5 - - - - - - CA -0.447
C4 - - - - - - CA 0.227
H (C2,6) - - - - - - HA 0.012
H (C3,5) - - - - - - HA 0.155
H (C4) - - - - - - HA 0.065
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Supplementary Table 2 Atom types and charge assignments

Atom Amber-96 Charmm-22 Compass OPLS-aa

Type Charge Type Charge Type Charge Type Charge
choline
H (O) HO 0.4275 - - - - - -
O (H,C) OH -0.6546 - - - - - -
C1 CT 0.2117 - - - - - -
C2 CT -0.0249 - - - - - -
N N3 -0.3854 - - - - - -
C3,4,5 CT -0.0249 - - - - - -
H (C1) H1 0.0352 - - - - - -
H (C2) HP 0.13 - - - - - -
H (C3,4,5) HP 0.13 - - - - - -
methanol
C CT 0.1215 CT3 -0.04 - - CT 0.145
O OH -0.6546 OH1 -0.66 - - OHm -0.683
H (O) HO 0.4275 H 0.43 - - HO 0.418
H (C) H1 0.0352 HA 0.09 - - HC 1 0.04
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